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ABSTRACT

A viscoelastic higher-order thick beam finite element formulation is extended to include
elastodynamic deformations. The material constitutive law is a special differential form
of the Maxwell solid which employs viscous strains as internal variables to determine the
viscous stresses. The total time-dependent stress is the superposition of its elastic and
viscous components. In the constitutive model, the elastic strains and the conjugate
viscous strains are coupled through a system of first-order ordinary differential equations.
The use of the internal strain variables allows for a convenient finite element formulation.
The elastodynamic equations of motion are derived from the virtual work principle.
Computational examples are carried out for a thick orthotropic cantilevered beam.
Relaxation, creep, relaxation followed by free damped vibrations, and damping related

modal interactions are discussed.
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INTRODUCTION

The combination of highly viscous low-modulus matrix materials with high-modulus
fibers produces stiff, highly damped load carrying composite structures. The quasi-static
and dynamic analyses of such structures require improvements in the material damping
representation over the velocity proportional damping schemes. Halpin and Pagano!
demonstrated that the relaxation moduli for anisotropic solids produce symmetric
matrices that can be expanded in a Prony series. Early viscoelastic models for harmonic
oscillations of composites computed the complex anisotropic moduli from the elastic
properties of the fibers and the complex modulus properties of the matrix material.>?
Recently, classical constitutive models have been used for transient deformations
including generalized Maxwell and Kelvin-Voigt solids.*® These constitutive models have
practical value since they provide adequate approximations for the dynamic softening and
hysteresis effects — the phenomena that are not directly proportional to strain rates.

Coleman and Noll,” and Schapery® presented comprehensive discussions on the
history integral form of the viscoelastic constitutive equations. Numerical
implementation of the history integral method requires storage of the deformation history.
Johnson and co-workers®!! developed differential constitutive laws for the large-strain
viscoelastic analysis of rubber. The differential formulations do not require that the
deformation history be stored. Instead, they require the storage of internal kinematic
variables and material property data that requires less memory than the deformation
history data. The differential law of Johnson and Stacer'® was employed in the

development of a viscoelastic, large-displacement shell finite element.!> Recently,



Johnson and Tessler,"> adopted the same differential constitutive law within Tessler’s'*
higher-order beam theory to derive a quasi-static, viscoelastic beam finite element. Their
finite element implementation required only minor modifications to an elastic finite
element code. The effectiveness and efficiency of the formulation were demonstrated by
numerical solutions for the problems of relaxation, creep, and cyclic creep of thick beams.

In this paper, the quasi-static viscoelastic formulation of Johnson and Tessler'® is
extended to elastodynamics. The history integral and differential forms of the
constitutive theory for a Maxwell solid are reviewed. The differential form is employed
to formulate a viscoelastic higher-order beam finite element. The conditions required for
the use of modal methods in the solution of the transient equations are described. The
paper concludes with a series of numerical examples which demonstrate the practical and

robust aspects of the formulation.

MAXWELL SOLID IN HISTORY INTEGRAL FORM
Hooke’s law for a linearly elastic solid can be written in tensor form as
0 =Cyu€y 1)

:i» Cipy, and €y, denote respectively the stress, elastic stiffness coefficients or

where O, Cj

moduli, and strain components. For a linear viscoelastic solid subjected to an
instantaneous incremental strain, A€, the time dependent stress-strain relations take the
form



where the viscous stresses, O ;; (t) decrease monotonically with time. The Boltzmann

superposition method is often used to approximate (2) as follows. The viscous stresses

are factored such that
o ; (1)= Ci;kl (t)Agy, 3)
The functions C,;k, (t) are referred to as time dependent viscous moduli. These

monotonically decreasing functions are approximated in time using a Prony series, i.e.,

-t

Ciu(®)= 2 e 4)

n=1
where 7, 2 0. The stress-strain relations then become
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0;(t) = Cyy Agy + Z ik e™ Agy )
n=1
The above approximation is extended to the case of a continuously deforming solid by

associating the continuous time dependent strain with an incremental strain history and

convoluting (5) in time. The approximation to the time dependent stresses becomes

(“tm)
M
o;(t)= ]kle 8k1+z Jkle(t th)e T A,gy (6)

m=1
where the strain increments at times ¢, are A, &, for m=1,..., M, and use is made of

the Heaviside unit step function, H (t -1, ) By defining the viscous moduli in terms of

the relative time, ¢ — £,,,



~(t=tm)
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n=1

the constitutive model in (6) takes the form
M M
14
0;i(t)=Ciy D AnEy+ Y, i(t =) Anty ®
m=1 =1

Assuming that strains are smooth functions of time, and taking the limit as

(typs1 — ) — O forall m, gives rise to

t
0;i(t) = Cyuenu () + J.Ci;kz (t-7) &)

T=—c0

dey, (1) dr
drt

where it is noted once again that the viscous moduli, Ci;'kl (t—7), are monotonically

decreasing in time. Equation (9), with the use of (4), is known as the Maxwell solid
constitutive model in history integral form.

In many practical applications, adequate time-dependent stress predictions can be
obtained with only several terms in the Prony series. However, the numerical
approximation of (9) requires that the history of the strain, £;;(7), must be saved which
is computationally expensive. Thus, algorithms for (9) must determine the minimum
strain history to be retained in order to update the viscous stress approximation
accurately as time evolves. When the material can be modeled as a linear Maxwell solid
then a recurrence relation can be derived for the finite difference form of (9) and the long

term storage of the history is avoided. In what follows we develop an alternative



formulation for (4) and (9) by employing internal variables conjugate to the strain

variables allowing (9) to be expressed in full differential form.

MAXWELL SOLID IN DIFFERENTIAL FORM

Following Johnson et al.,*!! an alternative form of the above constitutive model for a
Maxwell solid is derived (also refer to Green and Tobolsky,!® and to Doi and Edwards'®).
Let us first define a set of internal strain variables, &y, for each time constant in the
Prony series, whose increments, at time f,,, are equal to the increments of the measurable

strains. We relax the internal variables between strain increments with the relation

N——

~(t-tm

Aneg(t—t,)=H(t-t,)e ™ A,ey (10)

Introducing (10) into (6) results in

M N M
0, ()= Cyy zAmsz + chkz ZAm£Zl(’“tm) (11)
m=1 n=1 m=1

Assuming the strains are smooth functions of time, and taking the limit as

(tps1 —tm) — O for all m, (11) becomes

N t
O (1)= Ciu€n )+ 2 ,-?kz Idez’& (t—17) (12)

n=1 T=-00
Also, as (1 —1,,) = 0, and with ¢,, =T, (10) becomes

~(t-7)

deg(t—1)=H(t—1)e ™ dey(t) (13)



Integrating (13) with respect to the history, T, yields

t _(t—T)

ept)= | fl%’r@e ™ dr (14)

T=-~—c0
Differentiating (14) with respect to the current time, Z, yields

) (1)
dey(t) 1 j‘ dekl(T)e n gr +d3kz(t) 1)

dt T, dt dt

T=—0
Substituting (14) into (15) yields the differential equations for the internal strain variables

in the form

n n
dey + 8 _ dey

Y n. 16
dt T dt ” (16)

n
Introducing (14) into (12) results in the stress-strain relations given by
N
0;(t) = Cyy Eult) + 21 it € (?) )
n=
Equations (16) and (17) represent the constitutive equations for the Maxwell Solid in
differential form. In what follows, these equations are adopted within a higher-order

beam theory, and a simple three-node beam element is derived.

VISCOELASTIC HIGHER-ORDER BEAM
The higher-order beam theory of Tessler'* coupled with the differential form of the
Maxwell solid constitutive equations is discussed in the context of a beam finite element

formulation. The beam geometry, kinematics and loading are shown in Figure 1. The



differential form of the viscoelastic constitutive equations consistent with the higher-order

beam theory are written in matrix form as

s(t)=Ce+ i C" e"(r)

n=1
de” e" de (4
+—=-— Vn
d 71, dt

T
where 87 =(0y, Oy Tyy)s €7 =(Egs £, Vi) € =(e§x, e, y;’z)

Cl 1 Cl 3 O Cln 1 C1n3 O
C = C13 C33 0 and Cn = C1n3 C:?3 O
0 0 C 0 0 CL

The vectors S and € are the engineering stresses and strains. The vectors e”
(n=1,2,...,,N) are the internal variables, i.e., conjugate viscous strains, where N is the
number of terms in a Prony series representation of the material’s stress relaxation
response. The matrices C and C” contain the elastic and viscous moduli. In the higher-
order beam theory,'* the components of the displacement vector are approximated
through the beam thickness by way of five kinematic variables, i.e.,

u,(x,z,t) = u(x,t)+ hi6(x,t)

u, (x,2, t) = w(x, t) + Cwl ( X, t) + (CZ _ %)Wz (x, t) (19)

where { =2z/h denotes a nondimensional thickness coordinate and 2/ is the total
thickness. The function u(x,?) represents the midplane (i.e. reference plane) axial
displacement, O(x,?) is the bending rotation of the cross-section of the beam, w(x,1) is

a weighted-average transverse deflection, and w(x,?) and w, (x,¢) are the higher-order



transverse displacement variables enabling a parabolic distribution of u,(x,z,?) through
the thickness. In addition to the displacement assumptions, (19), this beam theory
employs independent assumptions upon the €,, and ¥, that are respectively cubic and
quadratic through the beam thickness.
The above displacement and strain assumptions give rise to axial, transverse normal
and transverse shear strains of the form
€ =U(x,t),, +h0(x,1),,

wy(x,1) (x t) w2 (x t)

ezz ¢z (c)

+0,(0) 0(x,1),, (20)

xe = 0 (§) (W(x,2), +6(2,1))
where  0.(0)=hvi{(4~70%)17. 9,(0)=14(3-C*) /17,
(4 )=5(1—§ 2) /4, and V;3 is Poisson’s ratio. The simplest finite element

approximation of this beam theory involves a three-node configuration (see Figure 2)

which is achieved by the following interpolations

u(n,1) = (1—Mug (2) + 10 (2), 6(,2) = (1—M)BE (r) + N6 (),
w(n,) = (1-m)wg () + 1w} (t)—~n(1 n)(65(t) - 6{(2)). @1

£ £
wi(1,0) =W (1), wy(m.1)=W, ()
where 7] = x/ /£ is the nondimensional axial coordinate. The nodal degrees-of-freedom at
the two ends of the element have subscripts 0 and 1 respectively. Since the strains do not

possess derivatives of the w;(7,£) and w,(1,¢) variables, these variables need not be



10

continuous at the element nodes and, hence, their simplest approximation is constant for
each element. Their corresponding degrees-of-freedom are attributed to a node at the
element midspan.

For dynamic loading, the virtual work statement for an element of volume V with the

differential Maxwell constitutive law can be written as

d*u, d*u
JP[ % Ou, + dtzz 6uz) av + feTC6e dv

y @2)
+Y e’ € & dv 6w =0

n=1
where the first integral represents the virtual work done by inertial forces, the second is
the internal virtual work done by the elastic stresses, the third is the internal virtual work -
done by the viscous stresses, and OW is the virtual work done by the external forces.
Introducing (21) into (19) and substituting the results into (20) yields finite element

approximations of the strains in terms of the nodal variables, i.e.,

e=Bu, (23)
(1 g _zg 91, z
/ ¢ { {
B-| 0 o -1 o, o
¢ h KW ?
0 92 %= o o o %= 9
| ¢ 2 ¢ 2 |

and u’ = (uo,wo,eo,Wl,%,ul,wl,Bl) denotes the element nodal displacement

vector. Next, a set of analogous nodal variables, u”, and corresponding viscous strains,

e”, are introduced. These are related by
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e"=Bu” , (24)
The u" variables, which carry the time dependent information for the material within the
element, are independent from element to element. The displacements u, and u, are
then expressed in terms of the element nodal degrees-of-freedom using (19) and (21),
giving rise to u, = q),;r uandu, = d)ZT u, where @, (§,7) and @, (¢, 1) are vectors of
the interpolation functions. The virtual work statement for an element then becomes

d*u’

-7 [p(®.®] +@,®])dV Su+u” [BTCB 4V éu

25)
N
+Yu" [BTC*BdV &u" - 6W =0
n=1

By defining the integrals in (25) as the mass, m, elastic stiffness, K, and viscous

stiffness, K", matrices, there results

d*u’ T N o.T
g% m+u Kk |6u+ Zu K" u" | —6W=0 (26)

n=1

Since Su = du” when 7 is constant, the virtual work takes on a simpler form

d2u’ .
-2 m+u'k+ Y u" k" |fu-W=0 7)
n=1.

This implies that at any time Z the element equilibrium equations are

d’u N
mzz— +ku=f- 2 k" u” for each element (28)

n=1
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where f denotes the element consistent load vector due to the external loading.
Introducing (23) and (24) into the differential equations for the strain variables in (18)
yields

du” w _du (29)
a =z dt

n
The global equilibrium equations are determined by the standard assembly of the
element equations, (28), and there is no assembly for (29). The global equations of

motion can be written as

d2ug
M dr2 + Kug = Fmech - Fvisc ‘ (30)

where u g denotes the global nodal variable vector, M is the mass matrix, K is the

elastic stiffness matrix, K, , is the global force vector due to mechanical loads, and

N
isc 1S the assembled vector foer" u”. The viscoelastic problem is solved by

n=1

F

14

simultaneously integrating the first order differential equations, (29), and the second order
equations, (30), where the latter is subject to the appropriate boundary restraints.
As far as the finite element implementation is concerned, a conventional linear elastic

code can be readily adapted to perform a dynamic analysis for a structure made from a

Maxwell material. The viscous stiffness coefficients, Cg ,

are used to compute the
element viscous stiffness matrices, k", which are stored for repeated use. The internal

nodal variables for each element, u”, are set equal to their initial values. An iterative

Newmark algorithm is then used to integrate (29) and (30). The modification of
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Newmark’s algorithm is required so that (29), the internal variable evolution equations,

are implicitly integrated with the trapezoidal method.

CONDITIONS FOR MODAL ANALYSIS

o,
dt

When a Voight solid is used to determine the damping forces (i.e., F,;. =C,
the damping matrix, C, , is often assumed to be proportional to M and/or to K so that
the transient motion can be studied using modal methods. For the Maxwell solid
presented above, when the element viscous stiffness matrices, k”, are proportional to the
element’s elastic stiffness matrix (i.e., k" = a,k, @, = constants) and when the time
constants, T,, are the same for all elements, the global equations of motion can be studied

using modal methods. This is accomplished as follows. First, the mode shapes, €;, and
frequencies, (@;, are determined by solving

(K-w?M)e; =0 G1)
where the modal vectors are normalized with respect to the mass matrix so that
e,-TM €; = 5,-]- - In analogy with the case of a Voight solid, the condition for uncoupling

the homogenous form of (29) and (30) is determined. Under the above assumptions of
material behavior it can be shown that the global viscous nodal forces are related to global

viscous displacement vectors by
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Fi. =2 K'u} = KY a,u" and

visc g 8
n n
(32)
dua? u’ du
g4 8- ¢ YV n
da 7, t

Using the mode shapes, the transient motion can be expressed as

ug(t)=Zc,-(t)e,. and ug(t)=Zbi”(t)ei (33)

With (33) the homogenous form of (29) and (30) becomes

( 32
3 d—g—iM+(c,. +2a,,b,."JKJ e; =0
n

T\ dt
( (34)
B B dc.
2 i’—+4———ci)ei =0 Vn
;c\dt 1, dt
Premultiplying (34) by e}w and eJTM respectively results in
d’c,
J 2 n|_
Rl (cj + > a,b] ] =0
" (35)

d_b-;l__*__l_)z_&:o Y n
a t, dt

Equations (35) represent a system of uncoupled first and second order ordinary

differential equations for the modal functions b}(t) m=1,2,..)and ¢ i(2). In general,

the element viscous stiffness matrices, kK", are not expected to be proportional to the
element elastic stiffness matrix, K, in each element. For example, the stiffness matrices
k” for a composite are expected to be highly dependent on the matrix material which has

isotropic properties. In contrast, the elastic stiffness matrix, K, depends on the
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anisotropic properties of the fibers. Consequently, the dynamic response of a composite
structure is expected to possess a certain degree of modal coupling, depending on the

respective magnitudes of the elastic and viscous moduli.

APPLICATIONS

Numerical solutions representative of quasi-static and free vibration deformations of a
thick cantilevered orthotropic beam are presented. The beam shown in Figure 1 has the
following dimensions: L=0.2m, 2h= 0.02m, and 5b=1.0m. The plane-stress
elastic moduli can be expressed in terms of engineering material constants as

Cu=E,[(1-vgVy), Cu=E[(1-vyV,), Ci3=V.Csy, Cs5=G,
A unidirectional E-glass/epoxy laminate is considered'’ for which the material constants
are: E, =38.6GPa, E, =8.27GPa, G,, =4.14GPa, v,, =0.26, and p=1.8
g/em’. To demonstrate relaxation, creep, and high frequency damped vibration, the

viscous matrices C” are assumed proportional to the elastic matrix C as follows:

Ccl=C’= %C. The relaxation times are 7; =0.1 and 7, =0.001. Thus, the

time dependent constitutive matrix is

C(r)=C [I.O Lo, 1 e’O'OOIt]
10 10

The beam is uniformly discretized with 32 elements for the relaxation, creep, and
relaxation-free vibration problems, whereas the modal interaction example employed a 50

element model.
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Relaxation: A cantilever beam (Figure 1) with w, u, 6 fixed at point A has a
prescribed deflection w at point B that is ramped from 0 to -0.0319m in 0.05 sec and
then held constant. Figure 3 depicts the maximum axial stress at the top surface of the
clamped end (point C) as a function of time. Also shown are the elastic and viscous
stress components which comprise the total stress. The decay of the total viscoelastic
stress to its elastic value as time is increased demonstrates the expected step-strain
relaxation behavior.

Creep: In this example, the cantilevered beam has a prescribed concentrated vertical
force applied at point B that is ramped from 0 to -300 kN in 0.05 sec and then held
constant. Figure 4 depicts the tip deflection as a function of time. The creep response of
the beam is shown along with its elastic response to the same loading. Figure 5 shows the
time-dependent transverse shear strain through the thickness at the clamped end.

Relaxation-Free Vibration: This example demonstrates the the capability of the

present constitutive law to simulate a material response over a wide range of strain rates.
Following the Relaxation example above, the tip of the beam (the location of the
prescribed displacement) is released at t = 0.1 sec. Figure 6 depicts the high frequency
damped axial stress at point C as a function of time.

Modal Interaction: Modal interaction due to material damping is investigated using

two distinct material models. The first model, referred to as the proportional model, is

the one described above. It meets the requirements for modal analysis. The second

model represents the case in which the viscous matrices C” are not proportional to the

elastic matrix C. Instead, the damping is isotropic with material constants:
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E,=E,=3.86GPa, G,, =0414GPa, and Vv, =V, =0.35. A discretization
study of the elastic vibration modes, (31), determines that a uniform mesh with 32
elements can adequately approximate the first thirteen modes. Mode thirteen is a bending
mode with a half wavelength approximately equal to the thickness of the beam and
represents the limit of validity of the higher-order beam theory. Free damped vibration
transient analyses were then performed, using 50 elements. The initial shape of the beam
was mode 7 (also a bending mode) and the initial velocity was zero. The transient
analysis for this proportional model showed no modal interaction. That is, the
contribution of the kinetic energy in modes other than mode 7 were double precision
zeros relative to the mode 7 value at each time step. Mode 7 damped out without exciting
other modes. In the case of the nonproportional model, more than 99.0% of the kinetic
energy is attributed to mode 7; however, mode 3 (a bending mode) is also excited and
contributed to about 0.5% of the kinetic energy with the other modes contributing smaller

amounts.

CONCLUSION

An elastodynamic formulation, which includes a differential form of the Maxwell
viscous solid constitutive theory, has been implemented in a higher-order-theory beam
finite element. The attractive features of the formulation include: (a) The use of
constitutive constants that are the same as those of the classical history-integral model.
These constants are readily available from step-strain relaxation tests, (b) The internal

variables are conjugate to the elastic strain measures; hence, they are consistent with the
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kinematic assumptions of the elastic formulation, (c) The update of the internal variables
can be performed in a parallel computing environment, allowing the viscous force vector
in the equations of motion to be determined efficiently within the modified Newmark
algorithm, (d) Applications of time-dependent displacements and loads are performed
within the same finite element algorithm, and (D) The higher-order beam theory accounts
for both transverse shear and transverse normal deformations — the effects that need to
be accounted for in thick and highly orthotropic beams, and in high-frequency dynamics.
The numerical examples clearly demonstrate the capability of this finite element
formulation to simulate physically important phenomena that are computationally

difficult to obtain by other approaches.
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